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Abstract
Reinforcement learning (RL) algorithms have re-
cently shown encouraging successes in learn-
ing to solve sequential decision-making problems
through interactions with the environment. How-
ever, to scale them to complex real-world tasks,
agents must be able to discover and adapt to the
varying information structures in the environment.
The issue of learning under unknown, dynamic, and
generally amorphous information structures poses
a great challenge to current RL studies. To address
it, we propose a novel notion, Informationally-
Mosaic Reinforcement Learning (IMRL), where
the agent relies on a complementary, autonomous
module to explore, learn and utilize constructive in-
formation from the environment. In particular, the
agent’s exploration operates in a laissez-faire man-
ner, that is, it voluntarily rewards the autonomous
module for discovering helpful information. The
proposed framework brings up flexibility with re-
spect to information structures, as well as enhances
reinforcement learning efficiency. This paper in-
troduces novel metrics, including Value of Infor-
mation (VoI), quantifying the importance of in-
formational exploration, and Equilibrium Quotient
(EQ), demonstrating the efficiency and effective-
ness of the agent’s decision making within IMRL.
We present the corresponding numerical evalua-
tion using several procedurally-generated bench-
mark Minigrid environments.

1 Introduction
Reinforcement Learning (RL) has a vast potential for au-
tomating economically relevant tasks such as learning control
policies for robots directly from pixel values from cameras
in the real world [Levine et al., 2016; Levine et al., 2018],
playing video games [Mnih et al., 2015], indoor navigation
[Zhu et al., 2017] and even creating agents that can meta-
learn (“learn to learn”) [Duan et al., 2016; Wang et al., 2016].
However, to scale RL to complex real-world tasks, practical
autonomous agents are required to build correct knowledge
of the environment using available information flexibly, and
utilize it efficiently, which has not been addressed thoroughly.

Informational Flexibility What information agents can
observe or acquire at each time instance, which we term the
information structure (IS), directly influence the development
of agents’ decision-making model. Mathematically, IS is de-
fined by a set of random variables that can be observed by
agents. Because of its autonomous nature, RL is more chal-
lenging than supervised learning and unsupervised learning
in terms of information structures. For the later two, the IS,
is usually static and prefixed by human operator. For exam-
ple, the IS for supervised learning is just pairs of data points
and associated label. However, in RL applications, agents in
general faces unknown, dynamic and amorphous IS. For ex-
ample, in robot navigation [Zhu et al., 2017], what agents can
observe is subject to physical conditions of the environment,
which can be dynamic. Besides, in multi-agent systems,
message passing among agents can emerge naturally with-
out any preset protocol, creating amorphous IS[Hernandez-
Leal et al., 2019]. Therefore, the agents need to dynamically
process unstructured information that varies across environ-
ments and is generally unknown beforehand. Consequently,
the flexibility of learning frameworks with respect to dynamic
and amorphous IS is critical to the success of RL applications
in reality. However, current studies have primarily focused
on RL under prefixed IS, e.g., full/partial state observation
[Hernandez-Leal et al., 2019].

Efficiency Moreover, RL is also known to require huge
amounts of experience before becoming useful, even when
solving relatively small problems, which is a challenge for it
to be implemented to solve everyday problems. This bottle-
neck is primarily due the slow collection and understanding
of information. This problem intensifies further when multi-
ple intelligent agents simultaneously learn in the same envi-
ronment.

In this article, we propose the novel notion of
Informationally-Mosaic Reinforcement Learning (IMRL),
which explicitly addresses the problem of reinforcement
learning under unknown, dynamic, and generally amorphous
information structures. IMRL can be applied to various base
RL algorithm and information structures (e.g. features, fea-
ture groups or raw input). In particular, an intelligent agent
that can observe the environment partially, makes use a com-
plementary, autonomous module — the information explorer
— which explores and learns constructive information from
the environment. In IMRL, an agent learns to efficiently ar-



range together pieces of information (hence the term mosaic)
both from its own partial observation and informational “mes-
sages” from the information explorer and chooses sequential
actions in the environment. Another fold of mosaic is the
agent self is also a small piece, especially in multi-agent sys-
tems: it does not require any specific information structure
to function, rather it can be implemented under amorphous
ones.

We evaluate our algorithm on several procedurally-
generated benchmark Minigrid environments for the case
with one information explorer and one learning agent and
show that IMRL achieves better decision-making perfor-
mances compared to reinforcement learning without explicit
information-gathering. We also define two novel metrics -
Value of Information and Equilibrium Quotient - to quantify
the importance of exploring and gathering information in re-
inforcement learning and demonstrate the efficiency and ef-
fectiveness of the agent’s decision making within IMRL.

2 Related Works
The topic of learning information aggregation policies in re-
inforcement learning has not been much explored, unlike in
the supervised learning research [Dulac-Arnold et al., 2013;
Mnih et al., 2014]. Many of the proposals in reinforcement
learning address this issue by comprehensively providing the
learning agents with structured information to speed up their
learning. For instance, in action-advising [Griffith et al.,
2013; Torrey and Taylor, 2013; Zhan et al., 2016] the learn-
ing agent is provided with action suggestions from an expert
or a more experienced agent. In Human-focused transfer, an
automated agent learns to leverage diverse information trans-
ferred from a human and tries to make better use of this costly
feedback [Krening et al., 2016; Rosenfeld et al., 2018; Abel
et al., 2017]. Learning from Demonstrations is also a well-
studied category of methods in which an experienced teacher
provides demonstrations to a learning agent [Schaal and oth-
ers, 1997; Banerjee and Stone, 2007]. Transfer Learning (TL)
[Taylor and Stone, 2009] accelerates learning by reusing pre-
vious knowledge in Deep RL tasks [Omidshafiei et al., 2019;
Devin et al., 2017]. However, all of these works assume avail-
ability of prior structured knowledge or an expert which may
not be feasible at all times and for all applications. More-
over, as discussed earlier, the information structure in an en-
vironment varies dynamically and is generally unstructured.
In IMRL, an agent explicitly learns to explore valuable infor-
mation from the environmental states and goals and is capable
of adapting to dynamically changing information structures in
an environment.

To address the problem of learning unstructured informa-
tion from the environment, there is an interesting and growing
body of methods which investigates how to best share knowl-
edge by explicit communication with another agent (need not
be an expert), which can have different sensors and internal
representations. This type of transfer is motivated by a sim-
ple thought: knowledge which is already available in another
agent, need not be relearned from scratch. Recently, there
has been a significant revival of emergent communication re-
search using methods from deep reinforcement learning (deep

RL) [Hernandez-Leal et al., 2019]. However, the main mo-
tivation in these works is to address multi-agent learning and
communication is just used as a tool which the agents im-
plicitly use to benefit from. Whereas, in IMRL, we explic-
itly model informational exploration and enable the agent to
learn to value learned knowledge, hence motivating informa-
tion sharing much more adaptively. Moreover, most works in
this field have focused only on defining what knowledge to
transfer and how, whereas, we are interested in also address-
ing when to share information which is a non-trivial task too.
Allowing unrestricted communication throughout the learn-
ing phase [Gupta et al., 2021] is not feasible for all appli-
cations, and heuristics-based limitations are difficult to know
prior training and are not generalizable to different settings
[Hernandez-Leal et al., 2019].

3 Models
Informationally-Mosaic Reinforcement Learning, different
from the typical RL formulation, includes a complementary,
autonomous module used by RL agents to explore, learn
and utilize constructive information from the environment.
Such an autonomous module can be modelled as a sepa-
rate agent, i.e., information explorer, from a multi-agent sys-
tem viewpoint, and we call this framework as IMMARL
(Informationally-Mosaic Multi-Agent Reinforcement Learn-
ing). Mathematically, the stochastic game G in IMMARL can
now be defined by the following tuple

⟨N ∪ {H}, S, {Oa}a∈N , (Ua, I)a∈N , (M, V ), T, {ra}a∈N ⟩
in which the information explorer H observes the environ-
ment’s true state s ∈ S, and chooses its actions in the form
of a message-value pair (ma, va). IMMARL considers a par-
tially observable setting for the other n agents, identified by
a ∈ N ≡ {1, ..., n}. At any given time-step, each agent
a, draws observations oa ∈ Oa according to the observation
function O(s, a) : S × N → Oa, concatenates it with va

from H, and chooses sequential actions ia ∈ I ≡ {0, 1},
to decide whether to inquire for ma or not. On choosing
ia = 1, the agent observes ma from H in addition to oa.
Based on the final observation (oa with or without ma), each
agent a, chooses sequential actions ua ∈ Ua, hence form-
ing a joint action u ∈ U ≡ Un in the environment at each
time-step. The joint action u induces a transition in the envi-
ronment according to the state transition function T(s’|s, u) :
S × U × S → [0, 1].

The environment returns a reward corresponding to each
agent’s action ua in the environment, according to the the
reward function ra(oa, ua) : Oa × Ua → R. Now, the infor-
mation explorer must learn to encapsulate available informa-
tion from state s, into small “messages” ma, to facilitate the
learning of the agent a whenever required. The fact that com-
munication enables agents to outperform non-communicating
agents in several domains is not very surprising. However,
unrestricted sharing of information among agents during the
training and execution is not always feasible. The cost of
communication in the real world is not negligible, with an in-
crease in the number of agents in the environment it would
be best suited for the system to learn to communicate effi-
ciently and in some cases, individual agents may not even



have the ability to communicate with other agents. Hence,
two main ideas underly IMMARL: 1) sharing learned “use-
ful” knowledge efficiently among agents, and 2) learning in
a self-adaptive (Laissez-faire) manner. The remainder of this
section describes these ideas.

Figure 1: Informationally-Mosaic Reinforcement Learning (mod-
elled as a multi-agent system - IMMARL) to explicitly address rein-
forcement learning under unknown, dynamic, and amorphous infor-
mation structures in the environment.

Firstly, to motivate efficient knowledge sharing, the infor-
mation explorer learns a value va ∈ [0,∞) corresponding
to the informational message ma for each agent a ∈ N .
As mentioned earlier, an agent a must decide whether or
not to inquire for a ma from H considering this value (or
cost) of information va along with its partial observation
of oa of the environment. In case the agent decides to in-
quire, it must incur a cost of va as a penalty. Thus, agents
a ∈ N learn using {ra − va}a∈N . To incentivise the infor-
mation explorer to learn to produce better and useful mes-
sages for the other agents in the environment it maximizes
over not only the sum of their rewards from the environment
but also the sum of values it earned from sharing informa-
tion. Hence, the information explorer learns its policy using∑

a{ra}a∈N +
∑

a{va}a∈N . An interesting point to note
here that the information explorer does not directly interact
with the environment to get feedback, instead, it learns to out-
put “valuable” messages by looking at how the other agents
performed in the environment using the messages it commu-
nicated. This way, information explorer does not actually ex-
ist in the environment and hence IMMARL is just another
perspective to look at IMRL without imposing the inherent
challenges of multi-agent systems into the framework.

Secondly, an agent a ∈ N is capable of modifying its in-
quiry policy behavior in order to achieve system objectives in
diverse environments. In other words, the agent’s exploration
operates in a laissez-faire manner, that is, it voluntarily re-
wards the information explorer for discovering helpful infor-

mation. In most related works, the ‘when-to-communicate’
aspect of sharing information in a multi-agent system is ei-
ther ignored (i.e., free communication is assumed) or limited
using heuristics which do not generalize well. Also, previous
works have majorly focused on controlling the communica-
tion from the perspective of the information agent, while in
IMMARL, the learning agents play a significant role in de-
ciding whether to inquire or not by observing the cost of in-
formation along with their partial observation.

4 Numerical Experiments
4.1 Environments
MiniGrid environments [Chevalier-Boisvert et al., 2018]
are popular, procedurally-generated, and flexible gridworld
implementations where the agent can move between adjacent
tiles in a rectangular grid and interact with objects, such as
keys and doors (Figure 2). Agents can observe the environ-
ment partially, rewards are designed to be sparse, and spe-
cific actions are needed to visit all states, hence making ex-
ploration in these environment quite challenging. With Mini-
Grid, we can generate several environments that are different
in many ways. These test-beds enable evaluation of both the
learning abilities and efficiency of IMMARL and its flexibil-
ity to deal with diverse tasks.

4.2 Implementation Details
All environments give a 7×7×3 partial observation encod-
ing the contents in front of the agent. The agent cannot ob-
serve through walls or closed doors. The position and ori-
entation of the agent are shown by the red pointer, and the
grey-highlighted cells comprise the agent’s field of view (Fig-
ure 2). The action space is discrete: left, right, forward, pick
up, drop, toggle (unlocks a door if the agent has the corre-
sponding key and opens/closes a door if unlocked), and done.
In all tasks, the extrinsic reward is rt = 1 − 0.9(t/T ) for
success and zero for failure. Thus reward is given only for
solving the task, making it sparse. The grid is procedurally
generated at each episode, and the agent’s initial position is
random within a fixed area far from the goal (e.g., in DoorKey
the agent starts in the area with the key). Below is a list of the
tasks used in this article. Everything is as implemented by de-
fault in MiniGrid codebase [Chevalier-Boisvert et al., 2018].

• DoorKey-8x8 (Figure 2a): In this scenario, the agent
must pick up the key, toggle the door, and navigate to
the green square to receive a reward. This environment
is difficult, because of the sparse reward and a require-
ment of interaction with various objects, to solve using
classical RL algorithms (also shown later in Section 4.4).

• DynamicObstacles-16x16 (Figure 2b): The goal of the
agent is to reach the green goal square without collid-
ing with any of the moving obstacles in the room in this
environment. Agent is heavily penalized upon colliding
with an obstacle and the episode finishes. This environ-
ment is useful to test Dynamic Obstacle Avoidance for
mobile robots under partial observability. This task is
difficult and requires more steps to be completed.



(a) DoorKey (b) DynamicObstacles (c) SimpleCrossingS9N2 (d) SimpleCrossingS9N3

Figure 2: The MiniGrid environments used in this work. The agent has to navigate through a grid and interact with different objects (keys,
doors, balls) to fulfil a task. At each episode, the grids are procedurally-generated, changing rooms layout, objects positioning and color.

• SimpleCrossing (Figure 2c, 2d): The agent has to reach
the green goal square on the other corner of the room
which is divided by walls. Each wall runs across the
room either horizontally or vertically, and has a single
crossing point which can be used.

For the information explorer a convolutional neural net-
work was used to encode information into a vector of floating
points scaled to [1, 1] representing an informational ‘mes-
sage’ (consistent across domains) from the true state it ob-
served and another neural network was used to learn the
value of the information it gathered and learned to share with
the learning agent. SoftPlus (a smooth approximation to the
ReLU function) was used to constrain the output of the value-
of-information network to always be positive. For the actor
and critic networks of the learning agent, 2 fully-connected
multi-layer perceptron layers were used to process the in-
put layer and to produce the output from the hidden state.
The learning agent used another neural network to output
a binary decision for inquiring for a informational message
from the information explorer at each time-step. To sup-
port end-to-end training of IMMARL agent networks, the
real-valued output i of the inquiry policy is processed by a
discretise/regularise unit (DRU(i)). This unit regularises the
output during learning, DRU(i) = Logistic( Gaussian(i, σ)),
and binarizes it during execution, DRU(i) = 1 {i > 0}, where
σ is the standard deviation of the noise added to the chan-
nel. Proximal policy optimization (PPO) [Schulman et al.,
2017] was used to update the decision-making policies for
these agents.

4.3 Experimental setups
In this article, we experiment with only one learning agent
and one information explorer. Nevertheless, it is entirely pos-
sible that multiple information explorer agents could better
assist multiple learning agents. This is left to future works.
As discussed earlier, in IMMARL, the information explorer
H can observe the entire state of the environment, whereas
the learning agent receives a partial observation from the en-
vironment. Before, the learning agent takes an action, it has
to decide whether or not to inquire for a message from H.
We present four setups to study the learning curves (plots of
reward collections over time) of an agent with varying strate-

gies of making inquiries (learning-based and heuristic-based)
for information from the information explorer H.

1. Standard: The learning agent has no access to H
throughout the training and execution. This baseline
would help us realize the difficulty for an unaided agent
learning to perform a given task.

2. Complete Access: H shares information with the learn-
ing agent at all times. This acts as another baseline to
illustrate how capable and useful H can be in an envi-
ronment.

3. Random: The learning agent randomly interacts with
H. This acts as a heuristic for our experiments to com-
pare against IMMARL. Results and evaluation metrics
in the upcoming sections show significant differences in
IMMARL’s strategy of collecting information compared
to a random strategy.

4. IMMARL: H and the learning agent learn to share
“useful” knowledge efficiently using IMRL.

In all the setups except for IMMARL, the learning agent
incurs no penalty for receiving messages.

4.4 Results
This section describes the experiments conducted to test in-
formation explorer’s potential of learning and encapsulating
messages, speeding up learning agent’s training, and learn-
ing an efficient exchange of knowledge in IMRL, on three
MiniGrid environments — DoorKey, DynamicObstacles, and
SimpleCrossing — whose details are described in the previ-
ous section. Learning curves shown in Figure 3 for evalua-
tion are plots of the agent’s average reward collected (aver-
aged over 10 episodes) as a function of episodes. The plots
show the mean and confidence interval over sixteen random
seeds per method, smoothed using a sliding window of 100
episodes for readability.

At first, we conduct experiments to compare the strength
of IMRL against RL. For this, we let the learning agent learn
to accomplish the tasks alone, by partially observing the en-
vironment. Figure 3 shows the corresponding curve (red)
for this case in all domains. This experimental setup acts
as a baseline to compare with the performance of IMMARL



Figure 3: Informationally-mosaic reinforcement learning outperforms regular reinforcement learning and randomly gathering information.
IMRL also illustrates similar performances to a learning agent with complete access to true states in all domains, but uses a much more
efficient strategy of optimally building mosaics of information over time (or episodes). The plots show the mean and confidence interval of
the agent’s average reward collected (mean over 10 episodes) as a function of episodes, smoothed over 100 episodes for readability.

agents. Next we allow the agent to make unrestricted use
of the information explorer throughout the learning process.
The learning agents performs better than the above baseline,
i.e., it is able to collect greater reward values earlier than
in other cases, as is shown by corresponding performance
curves (purple) in Figure 3. This is not surprising because the
learning agent has free access to the true state information of
the environment at all times.

Next, we let the agents learn under the principles of
informationally-mosaic reinforcement learning. The learn-
ing reward curves for IMMARL agents in all the domains are
shown in Figure 3 (green). In all environments, IMMARL
agents outperform the independently learning agents. These
results suggest that the information explorer was able to ex-
plore “usable” information structures from the true state of
the environment resulting in enhancing reinforcement learn-
ing of the agent, thus, reasonably demonstrating that IMRL is
superior to standard reinforcement learning.

An interesting point to note in the above results is that,
IMMARL agents perform better than the case with non-
restricted access to the information explorer in the Simple-
CrossingS9N3 scenario. We speculate that availability of
more knowledge than necessary during the learning made
it difficult for the agent to train, whereas IMMARL agents
were able to learn an optimal strategy for sharing of only “re-
quired” knowledge during training, leading to a better per-
formance in terms of reward collections in the environment.
Furthermore, consistent better performance of IMMARL in
diverse domains signifies that the notion is indeed flexible and
self-adaptive. In other words, the learning agent was able to
adapt it inquiry policy to incentivise the information explorer
to produce more useful or (“valuable”) messages and the in-
formation explorer was able to adapt its value/cost function
during the learning in order to promote efficient knowledge
sharing in diverse environments without any changes to the
framework.



Finally, we enable the agent to randomly inquire for infor-
mation from the information explorer to investigate the fact
that IMMARL agents are learning a better, or at least differ-
ent strategy than a random strategy. Compared to the Stan-
dard experimental setup, in Random, agents performed well
in some cases (DynamicObstacles), indifferent in some (Sim-
pleCrossingS9N3, SimpleCrossingS9N3), while very bad in
the others (DoorKey). Figure 3 shows corresponding learning
curves (blue) in all the domains, illustrating that the random
strategy is unpredictable and certainly cannot adapt to vary-
ing situations. On the other hand, IMMARL agents learn a
significantly different strategy and the learning adjusts to all
the diverse test-beds, hence exhibiting adaptability.

In summary, this article’s empirical evaluations of IMRL in
various MiniGrid domains suggest: 1) IMRL performs better
than regular reinforcement learning, randomly gathering in-
formation, and in some cases, complete access to true states
too, 2) IMRL is flexible and works across domains with dif-
ferent information structures and complexity levels, and 3)
IMRL is cost-effective, i.e., does not rely on the information
explorer all the time (also discussed later in evaluation met-
rics) and self-adaptive, i.e., adapts the information explorer’s
value-of-information policy and the learning agent’s inquiry
policy to adapt to different environmental settings.

4.5 Evaluation Metrics

(a) VoI (b) EQ

Figure 4: Evaluation Metrics: (a) Value of Information (VoI):
to quantify the ‘usefulness’ of informational exploration through
IMRL, (b) Equilibrium Quotient (EQ): to indicate the level of infor-
mation exchanged among agents, hence demonstrating the efficiency
and effectiveness of the agent’s decision making within IMRL

We propose the following novel metrics, that illustrate the
advantage of informationally-mosaic reinforcement learning.

1. Value of Information (VoI): We define the value of all
the information from the information explorer with each
episode as

ν = log

(
r∑
t ct

)
where r is the reward earned by the learning agent in an
episode and the ct is the cost incurred by the agent for
interacting with the information explorer at time-step t
in an episode. ν indicates how helpful the collection of
information sent by the information explorer is within
each episode.

Now, we can plot ν as a function of time (or episodes).
Figure 4a shows that, in all the domains, ν appears to be
increasing with time (number of episodes), suggesting
that the system is benefiting from the learned informa-
tion being collected and shared.

2. Equilibrium Quotient (EQ): We define the equilib-
rium quotient for algorithms that make explicit inquiries
for additional information before making decisions in
a state. This can relate to all RL algorithms where a
piece of information could be an action-advice from an
expert (human or artificial), communicated ‘messages’
from other agents in the system (or an expert) or prior
knowledge from another source (transfer learning). In
IMRL, we consider the number of messages from the in-
formation explorer as an external source of information
for the learning agent. EQ can be defined as

η =
number of inquiries made per episode

horizon of an episode
We can now plot this efficiency metric as the learning
proceeds (Figure 4b). η values indicate the level of in-
formation exchanged among agents. η = 1 for Complete
Access experimental setup and for Standard, η = 0. For
the Doorkey environment, η decreases over time indi-
cating that enough information has been gathered in the
initial stages and there is no further interaction required
a certain number of episodes (∼500K in this case). On
the other hand, the η plots for the other domains suggest
that the agents need not share much knowledge initially
and hence save the costs incurred due to such interac-
tions.

5 Conclusion
In this paper we argued how important it is for a framework
to be able to discover unknown, unstructured and dynamic in-
formation in complex environments, and formulated the task
of learning to explore information for solving diverse prob-
lem inside the reinforcement learning paradigm in a flexi-
ble and adaptable manner. We proposed the novel notion of
informationally-mosaic reinforcement learning in which the
learning agents bring together multiple pieces of simultane-
ously learned information for effective and efficient sequen-
tial decision-making. We also proposed two novel metrics
to formalize the quality of the emergent information (Value
of Information) and the efficiency of informational explo-
ration and sharing among agents (or modules) within IMRL
(equilibrium quotient) which can be certainly be leveraged by
much of the existing related research works.

There are several directions of future work from here. In
this article, the information explorer was provided with the
true state of the environment, which is impractical in various
applications. Furthermore, we limited ourselves to only two
agents interacting with each other; it would be interesting to
extend this to multiple learning agents in the environment.
Therefore, fruitful directions for future work would be to de-
velop frameworks where the information explorer can also
partially observe the environment and one which designs the
complicated interactions among multiple learning agents, and
possibly multiple information explorers, in the environment.
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